☰ valikko
Calculat.org

Kotangenttifunktio

suorakulmainen kolmio A B C a b c α β
$$ \begin{aligned} & \cot\alpha = \frac{b}{a} \\ \\ & \cot\beta = \frac{a}{b} \end{aligned} $$

Kuvaaja

Kotangenttifunktio α cot α [°] [rad] 0 90° 180° 270° 360° 0,5π π 1,5π 2π

Laskin

Syötä 1 arvoa

α = 
α2 = 
cot α = 
±∞
Pyöristä  /  desimaalin tarkkuudella

Kaavat

Kotangenttifunktio

suorakulmainen kolmio A B C a b c α β
$$ \cot\alpha = \frac{b}{a} $$
$$ \cot\beta = \frac{a}{b} $$
$$ \begin{aligned} & \tan\alpha \cdot \cot\alpha = 1 \ \Rightarrow \\ \\ & \tan\alpha = \frac{1}{\cot\alpha} \end{aligned} $$
$$ \begin{aligned} & \cot\alpha = \frac{\cos\alpha}{\sin\alpha} \\ \\ & \tan\alpha = \frac{\sin\alpha}{\cos\alpha} \end{aligned} $$
$$ \begin{aligned} & \tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta} \\ \\ & \tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha\tan\beta} \end{aligned} $$
$$ \begin{aligned} & \tan 2\alpha = \frac{2\cdot\tan\alpha}{1 - {\tan}^2\alpha} \\ \\ & \left|\tan\frac{\alpha}{2}\right| = \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} \\ \\ & \tan(-\alpha) = -\tan\alpha \\ \\ & \cot(-\alpha) = -\cot\alpha \end{aligned} $$

Arvio

5,0/5 (1×)

X