tilavuus
$$ V = \frac{1}{3} A_p \cdot h $$
pinta-ala
$$ A = A_p + A_{v} $$
pohjan pinta-ala
$$
\begin{aligned}
&A_p = \frac{1}{4} n a^2 \cot\frac{180^\circ}{n} \\ \\
& n = 3 \ \Rightarrow \ A_p = \frac{\sqrt{3}}{4} a^2 \\ \\
& n = 4 \ \Rightarrow \ A_p = a^2
\end{aligned}
$$
vaipan pinta-ala
$$ A_{v} = \frac{n a h_a}{2} $$
särmä
$$
\begin{aligned}
s &= \frac{h}{\sin\alpha_1} \\ \\
s &= \sqrt{h^2 + r_o^2} \\ \\
s &= \sqrt{h_a^2 + \left(\frac{a}{2}\right)^2}
\end{aligned}
$$
sivukolmion korkeus
$$
\begin{aligned}
h_a &= \frac{h}{\sin\alpha_2} \\ \\
h_a &= \sqrt{h^2 + r_v^2} \\ \\
h_a &= \sqrt{s^2 - \left(\frac{a}{2}\right)^2}
\end{aligned}
$$
ulkoympyrä (säde)
$$
\begin{aligned}
&r_o = \frac{a}{2\cdot\sin\frac{180^\circ}{n}} \\ \\
& n = 3 \ \Rightarrow \ r_o = \frac{a}{\sqrt{3}} \\ \\
& n = 4 \ \Rightarrow \ r_o = \frac{a}{\sqrt{2}}
\end{aligned}
$$
sisäympyrä (säde)
$$
\begin{aligned}
&r_v = \frac{a}{2\cdot\tan\frac{180^\circ}{n}} \\ \\
& n = 3 \ \Rightarrow \ r_v = \frac{\sqrt{3}}{6}a \\ \\
& n = 4 \ \Rightarrow \ r_v = \frac{a}{2}
\end{aligned}
$$