☰ izvēlne
Calculat.org

n-tās pakāpes sakne

$$ \begin{aligned} & \bullet \ \ \sqrt[n]{x} = y \ \Rightarrow \ x = y^n \\ \\ & \bullet \ \ \sqrt[n]{x^m} = x^{\frac{m}{n}} \end{aligned} $$

Funkcijas grafiks

n = 
n-tās pakāpes sakne x y = nx 1 1 0

Kalkulators

Ievadiet m, n un 1 vērtību

$$ x = $$
$$ n = $$
$$ m = $$
$$ \sqrt[n]{x^m} = $$

Kļūda: 

 x < 0

Kļūda: 

 n√x < 0
Noapaļo līdz zīmei aiz komata

Formulas

kāpināšana

$$ \begin{aligned} & \sqrt[n]{x} = y \ \Longleftrightarrow \ x = y^n \\ \\ & \sqrt[n]{x^m} = x^{\frac{m}{n}} \\ \\ & \sqrt[p \cdot n]{x^{p \cdot m}} = \sqrt[n]{x^m} = x^{\frac{m}{n}} \\ \\ & \left(\sqrt[n]{x}\right)^m = \sqrt[n]{x^m} \\ \\ & \sqrt[n]{\sqrt[m]{x}} = \sqrt[m]{\sqrt[n]{x}} = \sqrt[m \cdot n]{x} \end{aligned} $$
$$ \begin{aligned} & \sqrt[n]{x \cdot y} = \sqrt[n]{x} \cdot \sqrt[n]{y} \\ \\ & \sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}} \end{aligned} $$
$$ \begin{aligned} & x^n \cdot x^p = x^{n + p} \\ \\ & \frac{x^n}{x^p} = x^{n - p} \\ \\ & \left(x^n\right)^p = x^{n \cdot p} \\ \\ & x^{-n} = \frac{1}{x^n} \end{aligned} $$
\begin{aligned} & x^n \cdot y^n = \left(x \cdot y\right)^n \\ \\ & \frac{x^n}{y^n} = \left(\frac{x}{y}\right)^n \end{aligned}
$$ \begin{aligned} & x^0 = 1 \\ \\ & x^1 = x \end{aligned} $$
$$ \begin{aligned} & 0^n = 0 \\ \\ & 1^n = 1 \end{aligned} $$

Vērtējums

5,0/5 (1×)

X