tilpums
$$ V = \frac{1}{3} S_p \cdot h $$
virsmas laukums
$$ S = S_p + S_{s} $$
pamata laukums
$$
\begin{aligned}
&S_p = \frac{1}{4} n a^2 \cot\frac{180^\circ}{n} \\ \\
& n = 3 \ \Rightarrow \ S_p = \frac{\sqrt{3}}{4} a^2 \\ \\
& n = 4 \ \Rightarrow \ S_p = a^2
\end{aligned}
$$
sānu virsmas laukums
$$ S_{s} = \frac{n a h_a}{2} $$
sānu šķautne
$$
\begin{aligned}
s &= \frac{h}{\sin\alpha_1} \\ \\
s &= \sqrt{h^2 + R^2} \\ \\
s &= \sqrt{h_a^2 + \left(\frac{a}{2}\right)^2}
\end{aligned}
$$
apotēma
$$
\begin{aligned}
h_a &= \frac{h}{\sin\alpha_2} \\ \\
h_a &= \sqrt{h^2 + r^2} \\ \\
h_a &= \sqrt{l^2 - \left(\frac{a}{2}\right)^2}
\end{aligned}
$$
apvilkta riņķa līnija (rādiuss)
$$
\begin{aligned}
&R = \frac{a}{2\cdot\sin\frac{180^\circ}{n}} \\ \\
& n = 3 \ \Rightarrow \ R = \frac{a}{\sqrt{3}} \\ \\
& n = 4 \ \Rightarrow \ R = \frac{a}{\sqrt{2}}
\end{aligned}
$$
ievilkta riņķa līnija (rādiuss)
$$
\begin{aligned}
&r = \frac{a}{2\cdot\tan\frac{180^\circ}{n}} \\ \\
& n = 3 \ \Rightarrow \ r = \frac{\sqrt{3}}{6}a \\ \\
& n = 4 \ \Rightarrow \ r = \frac{a}{2}
\end{aligned}
$$