☰ menu
Calculat.org

Volume and surface area of a pyramid

pyramid

pyramid h s s α1 α2 ro rv O A' a a
aedge
hheight
sslant height
slateral edge
α1,2angle
roradius (circumcircle)
rvradius (incircle)
Ocenter
A'apex

Calculator

Select the units of measurement

Enter the number of edges

number of edges

n =

Enter 2 values

edge

a =

height

h =

lateral edge

s =

slant height

s =

angle

α1 =

angle

α2 =

circumcircle (radius)

ro =

incircle (radius)

rv =

volume

V =

surface area

A =

base area

Ab =

lateral area

Al =

Error

Round to decimal place

Calculation procedure

Formulas

pyramid

nnumber of edges
volume
$$ V = \frac{1}{3} A_b \cdot h $$
surface area
$$ A = A_b + A_{l} $$
base area
$$ \begin{aligned} &A_b = \frac{1}{4} n a^2 \cot\frac{180^\circ}{n} \\ \\ & n = 3 \ \Rightarrow \ A_b = \frac{\sqrt{3}}{4} a^2 \\ \\ & n = 4 \ \Rightarrow \ A_b = a^2 \end{aligned} $$
lateral area
$$ A_{l} = \frac{n a s}{2} $$
lateral edge
$$ \begin{aligned} s &= \frac{h}{\sin\alpha_1} \\ \\ s &= \sqrt{h^2 + r_o^2} \\ \\ s &= \sqrt{s^2 + \left(\frac{a}{2}\right)^2} \end{aligned} $$
slant height
$$ \begin{aligned} s &= \frac{h}{\sin\alpha_2} \\ \\ s &= \sqrt{h^2 + r_v^2} \\ \\ s &= \sqrt{s^2 - \left(\frac{a}{2}\right)^2} \end{aligned} $$
circumcircle (radius)
$$ \begin{aligned} &r_o = \frac{a}{2\cdot\sin\frac{180^\circ}{n}} \\ \\ & n = 3 \ \Rightarrow \ r_o = \frac{a}{\sqrt{3}} \\ \\ & n = 4 \ \Rightarrow \ r_o = \frac{a}{\sqrt{2}} \end{aligned} $$
incircle (radius)
$$ \begin{aligned} &r_v = \frac{a}{2\cdot\tan\frac{180^\circ}{n}} \\ \\ & n = 3 \ \Rightarrow \ r_v = \frac{\sqrt{3}}{6}a \\ \\ & n = 4 \ \Rightarrow \ r_v = \frac{a}{2} \end{aligned} $$

Rating

3.3/5 (6×)

X