menu
Calculat
.
or
g
volume and surface area
» pyramid
Volume and surface area of a pyramid
A pyramid is a polygon. All vertices of this polygon are connected by the pyramid apex – a point outside the plane of the base.
The calculator performs calculations of a regular pyramid.
A regular pyramid is a pyramid the base of which has all edges of the same length.
pyramid
pyramid
h
s
s
α
1
α
2
r
o
r
v
O
A'
a
a
a
edge
h
height
s
slant height
s
lateral edge
α
1,2
angle
r
o
radius
(circumcircle)
r
v
radius
(incircle)
O
center
A'
apex
Calculator
Select the units of measurement
pm
nm
μm
mm
cm
dm
m
km
in
ft
yd
mi
Enter the number of edges
number of edges
n =
Enter 2 values
edge
a =
pm
nm
μm
mm
cm
dm
m
km
in
ft
yd
mi
height
h =
pm
nm
μm
mm
cm
dm
m
km
in
ft
yd
mi
lateral edge
s =
pm
nm
μm
mm
cm
dm
m
km
in
ft
yd
mi
slant height
s =
pm
nm
μm
mm
cm
dm
m
km
in
ft
yd
mi
angle
α
1
=
°
rad
angle
α
2
=
°
rad
circumcircle
(radius)
r
o
=
pm
nm
μm
mm
cm
dm
m
km
in
ft
yd
mi
incircle
(radius)
r
v
=
pm
nm
μm
mm
cm
dm
m
km
in
ft
yd
mi
volume
V =
pm³
nm³
μm³
mm³
cm³
dm³
m³
km³
mL
cL
dL
L
hL
in³
ft³
yd³
mi³
pt
qt
gal
pk
bu
gi
cup
pt
qt
gal
gi
pt
qt
gal
surface area
A =
pm²
nm²
μm²
mm²
cm²
dm²
m²
a
ha
km²
in²
ft²
yd²
acre
mi²
base area
A
b
=
pm²
nm²
μm²
mm²
cm²
dm²
m²
a
ha
km²
in²
ft²
yd²
acre
mi²
lateral area
A
l
=
pm²
nm²
μm²
mm²
cm²
dm²
m²
a
ha
km²
in²
ft²
yd²
acre
mi²
Error
Round to
decimal place
Calculation procedure
Formulas
pyramid
n
number of edges
volume
$$ V = \frac{1}{3} A_b \cdot h $$
surface area
$$ A = A_b + A_{l} $$
base area
$$ \begin{aligned} &A_b = \frac{1}{4} n a^2 \cot\frac{180^\circ}{n} \\ \\ & n = 3 \ \Rightarrow \ A_b = \frac{\sqrt{3}}{4} a^2 \\ \\ & n = 4 \ \Rightarrow \ A_b = a^2 \end{aligned} $$
lateral area
$$ A_{l} = \frac{n a s}{2} $$
lateral edge
$$ \begin{aligned} s &= \frac{h}{\sin\alpha_1} \\ \\ s &= \sqrt{h^2 + r_o^2} \\ \\ s &= \sqrt{s^2 + \left(\frac{a}{2}\right)^2} \end{aligned} $$
slant height
$$ \begin{aligned} s &= \frac{h}{\sin\alpha_2} \\ \\ s &= \sqrt{h^2 + r_v^2} \\ \\ s &= \sqrt{s^2 - \left(\frac{a}{2}\right)^2} \end{aligned} $$
circumcircle
(radius)
$$ \begin{aligned} &r_o = \frac{a}{2\cdot\sin\frac{180^\circ}{n}} \\ \\ & n = 3 \ \Rightarrow \ r_o = \frac{a}{\sqrt{3}} \\ \\ & n = 4 \ \Rightarrow \ r_o = \frac{a}{\sqrt{2}} \end{aligned} $$
incircle
(radius)
$$ \begin{aligned} &r_v = \frac{a}{2\cdot\tan\frac{180^\circ}{n}} \\ \\ & n = 3 \ \Rightarrow \ r_v = \frac{\sqrt{3}}{6}a \\ \\ & n = 4 \ \Rightarrow \ r_v = \frac{a}{2} \end{aligned} $$
Rating
★
★
★
★
★
3.3
/5
(
6
×)
volume and surface area
✕
cube
cuboid
cylinder
cone
sphere
prism
pyramid
area and perimeter
☰
circle
triangle
right-angled triangle
square
rectangle
rhombus
parallelogram
trapezium
pentagon
hexagon
polygon
Pythagorean theorem
percentage
cross-multiplication
equations
☰
linear equation
quadratic equation
system of linear equations
average
☰
arithmetic mean
weighted arithmetic mean
powers and roots
☰
square
cube
Nth power
square root
cube root
Nth root
trigonometric functions
☰
sine
cosine
tangent
cotangent
logarithms
☰
logarithm
natural logarithm
common logarithm
unit conversion
☰
length
area
volume
mass
speed
temperature
angles
pressure
power
energy
time
energy and fuel
☰
electricity consumption
fuel consumption
gas consumption